9/11/24

Local Search
Ch. 4.1-4.2

aiai= L= e

Bookkeeping

¢ Upcoming: homework 1 due 9/16 at 11:59 PM

* Last time: informed (heuristic) search
Greedy search

A* and its variants

* Today:
Local search

Beginnings of constraint satisfaction?

9/11/24

Today's Class

* Local Search
* Search as “landscape”
* |terative improvement methods
Hill climbing
Simulated annealing
Local beam search
Genetic algorithms

Online search

“If the path to the goal
does not matter... [we
can use] a single current
node and move to
neighbors of that node.”

— R&N pg. 121
* |Intro to Constraint Satisfaction
Real-World Problems
Hittd
* Suppose you had to solve VLSI ——ACr A=
layout problems (minimize —_— =
: =
distance between components, — —
unused space, etc.)... || Il

e Or schedule airlines...

* Or schedule workers with
specific skill sets to do tasks that
have resource and ordering
constraints

1‘1
(M

9/11/24

Local Search

* These problems are unlike the search problems previously:
* The path to the goal is irrelevant
* Allyou care about is the final configuration

* These are often optimization problems in which you find the best state
according to an objective function applied to a node (state)

* These problems are examples of local search problems

« We care about the current state of the world

Why Is This Hard?

* Lots of states (sometimes infinite)
* Most problems are NP-complete
* Objective function might be expensive

* But:
* Use very little memory (usually constant)

* Find reasonable (not usually optimal) solutions in large state spaces

9/11/24

Local Search Algorithms

Sometimes the path to the goal is irrelevant
* Goal state itself is the solution

* 3 an objective function to evaluate states
In such cases, we can use local search algorithms

Keep a single “current” state, try to improve it

oo g

Local Search Example: n-Queens

Put n queens on an nxn board with no two queens on the same row,

column, or diagonal
A B D

Does it matter how we got to D?

We only need the state — not the history/path

Once we reach D, can forget A, B/C

9/11/24

Local Search Algorithms

* 3 an objective function to
evaluate states

» State space = set of “complete”
configurations
» All elements of a solution are present
* All the queens are on the board

* All sudoku squares are filled

* Find configurations that satisfy constraints

* In such cases, we can use local search algorithms

* Keep asingle “current” state, try to improve it

9
Local Search Algorithm Recipe
1. Start with initial configuration X How you define the
o _ neighborhood is
2. Evaluate its neighbors, i.e., the . tant
set of all states reachable in one Lagjplolfiez a1z
move from X
3. Select one of its neighbors X* Which neighbor you
_ choose is important.
4. Move to X* and repeat until the
current configuration is
satisfactory Some # of iterations,
or some time, or until
you can’t move uphill
10

9/11/24

objective

Landscapes Cr

shoulder

local maximum
flat local maximum

Search graph can be a landscape

Each node has successor(s) it can reach (called s)

current state state space

Its children, unless there are loops

Each successor has some “goodness” (desirability) according to the
objective function

h(n) — h(s) is a positive, negative, or 0

Want to go “uphill” (moving

Minor hassle:
Sometimes maximizing,
sometimes minimizing.

to a more desirable state)

11
N-Queens example
Evaluation function: number of queens in conflict 4
We are here:
Some
possible
moves: f(
We want to traverse the graph “downward” (minimize f(n)), so we
choose the right-hand choice
12

9/11/24

State Space (Landscape)

Maximizing (higher
h(n) is better)

13

State Space (Landscape)

Maximizing (higher
h(n) is better)

14

9/11/24

State Space (Landscape)

Maximizing (higher
f(n) is better)

objective
value

Ts

current state state space

Maximizing (higher
h(n) is better)

objective
value

B

4

current state state space

9/11/24

State Space (Landscape)

objective
value

Maximizing (higher
h(n) is better)

A S

current state state space

17
State Space (Landscape)
Maximizing (higher
h(n) is better)
objective
value
current state state space
18

9/11/24

State Space (Landscape)

Maximizing (higher
h(n) is better)

objective

value /global maximum

shoulder

local maximum
flat local maximum /plateau

current state state space

19
Iterative Improvement Search
» Start with an initial guess
* Gradually improve it until it is legal or optimal
* Some examples: objective
value
Hill climbing
Simulated annealing
Constraint satisfaction
current state state space
20

10

9/11/24

Hill Climbing on State Surface

« Starting at initial state X, keep
moving to the neighbor with
the highest objective function
value greater than X’s

evaluation

» Concept: trying to reach the
“highest” (most desirable)

point (state)

« “Height” Defined by
Evaluation Function

current
state

\

* Use the negative of heuristic

cost function as the objective
function

21

Hill Climbing Search

* Looks one step ahead to determine if any successor is “better” than current
state, then moves to best choice

* |f there exists a successor s for the current state n such that
* h(s) > h(n) —it’s better than where we are now
e h(s) >= h(t) for all the successors t of n — and better than other choices
then move from n to s. Otherwise, halt at n.

A kind of Greedy search in that it uses h
* But, does not allow backtracking or jumping to an alternative path
+ Doesn’t “remember” where it has been

Not complete or optimal
* Search will terminate at local minima, plateaus, ridges.

22

11

9/11/24

Hill Climbing Pseudocode

X « Initial configuration

[terate:

E < Eval(X)
N <« Neighbors(X)
For each X; in N
Ei < Eval(Xi)
E* < Highest E;
X* « X; with highest E;
IfE*>E
X« X*
Else
Return X

Pretty simple, but
will help us later...

23
Hill Climbing Example
(backwards moves omitted for
brevity, but algorithm must AE
consider them)
start h=-4 goal 41 h=0
71615
5 ‘/I\‘_S) ,\T
2] 3
=-3 8l 4| h=-1
6] 5
A
3 ‘/I\ -4
213
\ > 8 h=-2
6] 5
h=-3 -4
f(n) = -(number of tiles out of place)
24

12

9/11/24

Exploring the Landscape

* Local Maxima:

* Peaks that aren’t the highest pointin
the whole space

e Plateaus:

* A broad flat region that gives the
search algorithm no direction (do a
random walk)

* Ridges:
e Flat like a plateau, but with drop-offs
to the sides; steps to the North and

South may go down, but a step to the
East and West is stable

local maximum

25
Local Maxima
Gets stuck in local maxima ie.
Eval(X) > Eval(Y) for all Y
1t where Y is a neighbor of X Flat local maximum: Our
c algorithm terminates if best
-% successor has same value as
5 current state. What if we
‘j; allowed “sideways” moves?
>
E /
2
o)
(@]
26

13

9/11/24

Drawbacks of Hill Climbing

* Problems: local maxima, plateaus, ridges

* Remedies:

* Random restart: keep restarting the search from random locations until the ‘best’
goal is found

* How do you know when to stop restarting?

* Problem reformulation: reformulate the search space to eliminate these problematic
features

e Sometimes feasible, often not
* Some problem spaces are great for hill climbing; others are terrible

» Hill climbing is also greedy local search because you are greedily choosing the
best-choice option in the neighborhood

27
Example of a Local Optimum
1] 2]5
7 f=-7
start sl sl 3 goal
1] 2 11213
81 7 8 41f=0
6 71 6] 5
f=-6 215
71 4] f=-7
3
28

14

9/11/24

Some Extensions of Hill Climbing

* Random-Restart Climbing
* Can actually be applied to any form of search
* Pick random starting points until one leads to a solution

* First-choice hill climbing
* Generate successors randomly until one is better than the current state
* Our original n-queens example!
* Good when state has many successors

* Local Beam Search
* Keep track of k states rather than just one
* At each iteration:
» All successors of the k states are generated and evaluated
» Best k are chosen for the next iteration

29
Some Extensions of Hill Climbing
* Simulated Annealing
* Escape local maxima by allowing some “bad” moves but gradually decreasing
their frequency
* Stochastic (probabilistic) Beam Search
* Chooses semi-randomly from “uphill” possibilities
+ “Steeper” (better) moves have a higher probability of being chosen
* Genetic Algorithms
» Each successor is generated from two predecessor (parent) states
30

15

9/11/24

The Problem

Typical real-world problems have many
(possibly an exponential number of)
local maxima

A hill-climbing algorithm that never makes “downhill” moves is
vulnerable to getting stuck in a local maximum

* Imagine a ball trying to reach the lowest state — it can get stuck in a “dip”
that’s above the lowest point

A purely random walk that moves to a successor state whether it’s

“up” or “down” will eventually stumble on the global maximum, but
is extremely inefficient

31
A possible solution
Let’s combine hill climbing with random walk
Hill-climbing never makes a downhill move
* What if we added occasional non-positive moves to hill-climbing to help it get
out of local maxima?
* Thisis the motivation for simulated annealing
Conceptually: Escape local maxima by allowing some “bad” (locally
counterproductive) moves but gradually decreasing their frequency
e Our “ball” is allowed to bounce “up” occasionally, getting it out of “dips”
If you're curious, annealing is the process of hardening metals by heating them to a high
temperature and then gradually cooling them. In very hot metal, molecules can move
fairly freely; they are slightly less likely to move out of a stable structure, so as metal
cools, molecules are more likely to stay in a strong matrix. So now you know.
32

16

9/11/24

Simulated Annealing

* Can avoid becoming trapped at local minima.

« Uses arandom local search that:

Accepts “moves” that decrease objective function f
As well as some that increase it

* Uses a control parameter T freedom to
By analogy with the original application make “bad”
Is known as the system “temperature” moves

» T starts out high and gradually decreases toward 0

33

Simulated Annealing Pseudocode

X « Initial configuration
Iterate:
E < Eval(X)
X’ «— Randomly selected neighbor of X
E’ < Eval(X’)
IfE°>E
XX
Re b So what’s p?
Else with probability p
XX
E«FE

34

17

9/11/24

Choosing p

 Ifpistoolow, we don’t make many ‘downhill” moves

* We might not get out of many local maxima
* If pistoo high, we may be making too many suboptimal moves

* If pis constant, we might be making too many random moves when we
are near the global maximum

» Solution: Decrease p over time
* More counterproductive moves early, fewer as search goes on

* Intuition: as search progresses, we are moving towards more promising areas
and hopefully toward a global maximum

35
Choosing p
* Use atemperature parameter T
« If E’ < E, accept the downhill move with probability p = eEE)/T
« Start with high temperature T
* More downhill moves allowed at the start
* Decrease T gradually as iterations increase
* Fewer downhill moves as we progress
* “Annealing schedule” describes how T decreases over time
36

18

9/11/24

Actual Simulated Annealing Pseudocode

X <« Initial configuration
Iterate:
Do K times:
E « Eval(X)
X’ < Randomly selected neighbor of X
E’ < Eval(X’)
IfE’>E
X<« X
E«F’
Else with probability p = e (E-E)T

X<« X

(Exponential cooling schedule
E«F

T(n) = oT(n-1)withO < a < |
N

T=aoT

37

Simulated Annealing: Examples

Rhino Viewport
” 6.4000% 10~

38

19

9/11/24

Simulated Annealing Summary

* f(n) represents the quality of state n (high is good)

Lots of
* A “bad” move from A to B is accepted with probability parameters
P(move,_g) = €/ /™" to tweak ®

* f(B)—f(A)is negative — ‘bad’ moves have low probability
* f(B)—f(A) is positive — ‘good” moves have higher probability

« Temperature
* Higher temperature = more likely to make a “bad” move

* AsT tends to zero, this probability tends to zero « domain-specific

« SA becomes more like hill climbing * sometimes hard to determine

+ IfTislowered slowly enough, SA is complete and admissible.

39
Local Beam Search
« Always keep k, instead of one, current state(s)
» Begin with k randomly chosen states
* Generate all successors of these states
* Keep the k best states across all successors
» Stochastic beam search
* Probability of keeping a state is a function of its heuristic value
* More likely to keep “better” successors
40

20

9/11/24

Local Beam Search

* How is this different from k random restarts in parallel?
* Random-restart search: each search runs independently of the others
* Local beam search: useful information is passed among the k parallel search threads

* E.g. One state generates good successors while the other k-1 states all generate bad
successors, then only the more promising states are expanded

» Disadvantage: all k states can become stuck in a small region of the state space
» To fix this, use stochastic beam search
* Stochastic beam search:
» Doesn’t pick best k successors

* Chooses k successors at random, with probability of choosing a given successor
being an increasing function of its value

41
Genetic Algorithms
[327552411 [32748552 | 3274162 |
[24748552 | 24752411 || 24752411 |
20 26% ~[327523411 [32752124 |— 372b2124|
114%™~ 24415124 [24415411] 24415417)]
(a) (b) (<) (dj (e)
Initial Population Fitness Function Selection Cross—Ovet Mutation
[2]«]7]«]¢]5]5]2] .nﬂﬂl
42

21

9/11/24

Genetic Algorithms

e Theidea:

* New states generated by “mutating”
a single state or “reproducing”
(combining) two parent states

« Selected for their fitness

* Like natural selection in which an organism creates offspring
according to its fitness for the environment

* Over time, population contains individuals with high fitness

43
Genetic Algorithms
Parents Offspring
* Similar to stochastic
beam search Lels[is]ifefafs]a]o sl [s]s]7]s]e]1]7]
. [s[efi]7]37]3]e]1]7] [sla[i[7[1]e]2]5]4]2]
« Start with k random states
(the initial population) reproduction
* Encoding used for the “genome” of
an individual strongly affects the
behavior of the search |4\8\1\5\1\6|7|3\4\2|
* Must have some combinable @
representation of state spaces
« Genetic algorithms / genetic |4\8\ 1 \5 \ 1 \6]0\3 \4\2|
programming are a research area mutation
44

22

9/11/24

GA Implementation

« Initially, population is diverse, crossover produces big changes from
parents

* Over time, individuals become similar and crossover doesn’t produce
such a big change

* Crossover is the big advantage

* Preserves a big block of “genes” that have evolved independently to perform
useful functions

45

Gradient Ascent / Descent

46

23

9/11/24

Hill climbing: Discrete spaces

X « Initial configuration
Iterate:
E < Eval(X)
N <« Neighbors(X)
For each X; in N
Ei < Eval(Xi)
E* < Highest E;
X* « X; with highest E;
IfE*>E
X « X*
Else
Return X

In discrete spaces, the
number of neighbors is
finite.

What if there is a
continuous space of
possible moves leading
to an infinite number
of neighbors?

47
Local Search in Continuous Spaces
* Almost all real world problems involve continuous state spaces
* The main technique to find a local minimum is called gradient descent
(or gradient ascent if you want to find the maximum)
* To perform local search in continuous state spaces, you need calculus
* What is the gradient of a function f(x)?
Vi(x)=— f(x)
L
. V/(x) (the gradient) represents the direction of the steepest slope
[V/(x)| (the magnitude of the gradient) tells you how big the steepest slope is
48

24

9/11/24

Gradient Descent

* Suppose we want to find a local minimum of a function f(x)

* (Which we do—the continuous-space analog of a minimum)
* We use the gradient descent rule:

x < x—aVf(x)

* Length of downward “steps” proportional to negative of the gradient
(slope) at the current state

« “Steepest descent” - long “steps”

* Jump to a node that is “farther away” if f () difference is large

49
Gradient Descent (or Ascent)
* Gradient descent procedure for finding the arg, min f(x)
* choose initial x, randomly
» repeat: Xjyp «— X; — 1 f7(X;)
* until the sequence xg, X4, ..., X, Xjs1 converges
» Step size n (eta) is small (~0.1-0.05)
* Good for differentiable, continuous spaces
* Why not just calculate the global optimum using Vf(x) =0 ?
* May not be able to solve this equation in closed form
« If you can’t solve it globally, you can still compute the gradient locally (like
we are doing in gradient descent)
50

25

9/11/24

Gradient Descent

f(x) = (X*-4x+4)(x*+4x+2)
Gradient Descent with Learning Rate: 0.001

100 -

51
Weaknesses of Gradient Descent
* Must pick a
* If too large, gradient descent overshoots the optimum point
* If too small, gradient descent requires too many steps and will take a very long
time to converge
* Can be very slow to converge to a local optimum, especially if the
curvature in different directions is very different
* Good results depend on the value of the learning rate a
* What if the function f(x) isn’t differentiable at x?
52

26

9/11/24

Gradient Methods vs. Newton’s Method

* Newton’s method (calculus):
Xiv1 <= Xi =N (X)) 1 f7(X5)

* Newton’s method uses 2nd order

information (the second derivative,
or, curvature) to take a more direct
route to the minimum.

* The second_o‘rder information is Contour lines of a function (blue)
more expensive to com pute, but e Gradient descent (green)
converges more quickly. * Newton’s method (red)

53
\ . n
Online” Search
* Interleave computation and action (search some, act some)
* Exploration: Don’t know outcomes of actions
* So agent must try them!
« Competitive ratio = Path cost found* / Path cost that could be found**
e *On average, or in an adversarial scenario (worst case)
e **|f the agent knew transition functions and could use offline search
* Relatively easy if actions are reversible
* LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new
nodes are found
55

27

9/11/24

Summary: Local Search (I)

« State space can be treated as a “landscape” of movement through
connected states

* We're trying to find “high” (good) points

» Best-first search: a class of search algorithms where minimum-cost
nodes are expanded first

* Greedy search: uses minimal estimated cost h(n) to the goal state as
measure of goodness

Reduces search time, but is neither complete nor optimal

56
Summary: Local Search (ll)
* Hill-climbing algorithms keep only a single state in memory, but can get
stuck on local optima
* Simulated annealing escapes local optima, and is complete and optimal
given a “long enough” cooling schedule
* Genetic algorithms search a space by modeling biological evolution
* Online search algorithms are useful in state spaces with partial/no
information
57

28

9/11/24

Class Exercise: Local Search for n-Queens

Heuristic?

State space?
Q P

Search algorithm?
Q Example moves?

Q Problems?

58
Class Exercise: Moving
* You have to move from your old apartment to your ne\ States?
the following: Neighborhood?
« AlistL={ay, ay, ..., ap} of n items, each with a size s(a;) >0. | Eyaluation
M moving boxes, each with a box capacity C (assume MC ex(function?
sizes of your items) How to avoid
You can put arbitrary items into a box as long as the sum of { local maxima?
exceed the box capacity C
* Your job is to pack your stuff into as few boxes as possible
* Formulate this as a local search problem
59

29

