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Local Search
Ch. 4.1-4.2

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. Rebecca 
Hutchinson @ Oregon State, and Dr. Matuszek @ Villanova University, which are based on Hwee

Tou Ng at Berkeley, which are based on Russell at Berkeley. Some diagrams are based on AIMA.
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Bookkeeping

• Upcoming: homework 1 due 9/16 at 11:59 PM

• Last time: informed (heuristic) search
• Greedy search
• A* and its variants

• Today:
• Local search
• Beginnings of constraint satisfaction?

2
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Today’s Class

• Local Search 
• Search as “landscape”
• Iterative improvement methods
• Hill climbing
• Simulated annealing
• Local beam search
• Genetic algorithms
• Online search

• Intro to Constraint Satisfaction
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“If the path to the goal 
does not matter… [we 
can use] a single current 
node and move to 
neighbors of that node.”

– R&N pg. 121

3

Real-World Problems

• Suppose you had to solve VLSI 
layout problems (minimize 
distance between components, 
unused space, etc.)...

• Or schedule airlines...

• Or schedule workers with 
specific skill sets to do tasks that 
have resource and ordering 
constraints

Slide from Dr. Rebecca Hutchinson @ Oregon State
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Local Search

• These problems are unlike the search problems previously:
• The path to the goal is irrelevant
• All you care about is the final configuration
• These are often optimization problems in which you find the best state 

according to an objective function applied to a node (state)

• These problems are examples of local search problems
• We care about the current state of the world

Slide from Dr. Rebecca Hutchinson @ Oregon State
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Why Is This Hard?

• Lots of states (sometimes infinite)

• Most problems are NP-complete

• Objective function might be expensive

• But:
• Use very little memory (usually constant)
• Find reasonable (not usually optimal) solutions in large state spaces

Slide from Dr. Rebecca Hutchinson @ Oregon State
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Local Search Algorithms

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• ∃ an objective function to evaluate states

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

7

Local Search Example: n-Queens

• Put n queens on an n×n board with no two queens on the same row, 
column, or diagonal

• Does it matter how we got to D?

• We only need the state – not the history/path

• Once we reach D, can forget A, B/C

A B D

C

8
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Local Search Algorithms

9

• ∃ an objective function to 
evaluate states

• State space = set of “complete”
configurations
• All elements of a solution are present

• All the queens are on the board
• All sudoku squares are filled

• Find configurations that satisfy constraints

• In such cases, we can use local search algorithms
• Keep a single “current” state, try to improve it

Image: telstarlogistics.typepad.com/telstarlogistics/2008/10/a-roadmap-to-our-highways-in-the-sky.html
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Local Search Algorithm Recipe

1. Start with initial configuration X 

2. Evaluate its neighbors, i.e., the 
set of all states reachable in one 
move from X 

3. Select one of its neighbors X* 

4. Move to X* and repeat until the 
current configuration is 
satisfactory 

How you define the 
neighborhood is 

important.

Which neighbor you 
choose is important.

Some # of iterations, 
or some time, or until 
you can’t move uphill

Slide from Dr. Rebecca Hutchinson @ Oregon State
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Landscapes

• Search graph can be a landscape

• Each node has successor(s) it can reach (called s)
• Its children, unless there are loops

• Each successor has some “goodness” (desirability) according to the 
objective function

• h(n) – h(s) is a positive, negative, or 0

• Want to go “uphill” (moving 
to a more desirable state)

11

Minor hassle: 
Sometimes maximizing, 
sometimes minimizing.
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N-Queens example

• Evaluation function: number of queens in conflict

• We are here:

• Some
possible
moves:

• We want to traverse the graph “downward” (minimize f(n)), so we 
choose the right-hand choice

f(        ) = 3

f(        ) = 4 f(        ) = 2

3
2

4

12
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State Space (Landscape)

S

A 1 B 4

2

C
3

Maximizing (higher 
h(n) is better)
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State Space (Landscape)

S

A 1 B 4

2

f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
3

Maximizing (higher 
h(n) is better)

14



9/11/24

8

State Space (Landscape)

B

S

S

A 1 B 4

2

f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
3

Maximizing (higher 
f(n) is better)
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State Space (Landscape)

A S

B

S

A 1 B 4

2

f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
3

Maximizing (higher 
h(n) is better)
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State Space (Landscape)

A S

B

A S

B

S

A 1 B 4

2

f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
3

Maximizing (higher 
h(n) is better)

17

State Space (Landscape)

A S

B

A S

B

S

A 1 B 4
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f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
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h(n) is better)
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State Space (Landscape)

A S

B

S

A 1 B 4

2

f (S) = 2

f (A) = 1

f (B) = 4

f (C) = 3

C
3

C

plateau/

Maximizing (higher 
h(n) is better)
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Iterative Improvement Search

• Start with an initial guess 

• Gradually improve it until it is legal or optimal

• Some examples:
• Hill climbing
• Simulated annealing
• Constraint satisfaction

20
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Hill Climbing on State Surface

• Starting at initial state X, keep 
moving to the neighbor with 
the highest objective function 
value greater than X’s

• Concept: trying to reach the 
“highest” (most desirable) 
point (state)

• “Height” Defined by 
Evaluation Function

• Use the negative of heuristic 
cost function as the objective 
function

21

21

Hill Climbing Search

• Looks one step ahead to determine if any successor is “better” than current 
state, then moves to best choice

• If there exists a successor s for the current state n such that 
• h(s) > h(n) – it’s better than where we are now
• h(s) >= h(t) for all the successors t of n – and better than other choices

then move from n to s. Otherwise, halt at n. 

• A kind of Greedy search in that it uses h
• But, does not allow backtracking or jumping to an alternative path 
• Doesn’t “remember” where it has been

• Not complete or optimal
• Search will terminate at local minima, plateaus, ridges.

22
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Hill Climbing Pseudocode

X ¬ Initial configuration

Iterate: 

E ¬ Eval(X)

N ¬ Neighbors(X)

For each Xi in N 

Ei ¬ Eval(Xi)

E* ¬ Highest Ei

X* ¬ Xi with highest Ei

If E* > E 

X ¬ X*

Else 

Return X
Pretty simple, but 
will help us later…

23

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 3

1 8 4

7 6 5

1 3

8 4

7 6 5

2

3

1 8 4

7 6 5

2

1 3

8 4

7 6 5

2

start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)

Hill Climbing Example
(backwards moves omitted for 

brevity, but algorithm must 
consider them)
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Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

• Local Maxima: 
• Peaks that aren’t the highest point in 

the whole space

• Plateaus: 
• A broad flat region that gives the 

search algorithm no direction (do a 
random walk)

• Ridges: 
• Flat like a plateau, but with drop-offs 

to the sides; steps to the North and 
South may go down, but a step to the 
East and West is stable

25

Local Maxima
Slide from Dr. Rebecca Hutchinson @ Oregon State
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Drawbacks of Hill Climbing

• Problems: local maxima, plateaus, ridges

• Remedies: 
• Random restart:  keep restarting the search from random locations until the ‘best’ 

goal is found
• How do you know when to stop restarting?

• Problem reformulation: reformulate the search space to eliminate these problematic 
features
• Sometimes feasible, often not

• Some problem spaces are great for hill climbing; others are terrible

• Hill climbing is also greedy local search because you are greedily choosing the 
best-choice option in the neighborhood

27

27

Example of a Local Optimum

28

1 2 5

8 7 4

6 3

4

1 2 3

8

7 6 5

f = -6

f = 0

start goal
f = -7

2 5

7 4

8 6 3

1

move 

up

1 2 5

8 7 4

3

f = -7
6

move 

right
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Some Extensions of Hill Climbing

• Random-Restart Climbing
• Can actually be applied to any form of search
• Pick random starting points until one leads to a solution

• First-choice hill climbing
• Generate successors randomly until one is better than the current state

• Our original n-queens example!
• Good when state has many successors

• Local Beam Search
• Keep track of k states rather than just one
• At each iteration:

• All successors of the k states are generated and evaluated
• Best k are chosen for the next iteration

29

• Simulated Annealing  
• Escape local maxima by allowing some “bad” moves but gradually decreasing 

their frequency

• Stochastic (probabilistic) Beam Search
• Chooses semi-randomly from “uphill” possibilities
• “Steeper” (better) moves have a higher probability of being chosen

• Genetic Algorithms
• Each successor is generated from two predecessor (parent) states

30

Some Extensions of Hill Climbing

30
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The Problem

• Typical real-world problems have many 
(possibly an exponential number of)
local maxima

• A hill-climbing algorithm that never makes “downhill” moves is 
vulnerable to getting stuck in a local maximum
• Imagine a ball trying to reach the lowest state – it can get stuck in a “dip” 

that’s above the lowest point

• A purely random walk that moves to a successor state whether it’s 
“up” or “down” will eventually stumble on the global maximum, but 
is extremely inefficient

31

31

A possible solution

• Let’s combine hill climbing with random walk

• Hill-climbing never makes a downhill move
• What if we added occasional non-positive moves to hill-climbing to help it get 

out of local maxima?
• This is the motivation for simulated annealing

• Conceptually: Escape local maxima by allowing some “bad” (locally 
counterproductive) moves but gradually decreasing their frequency
• Our “ball” is allowed to bounce “up” occasionally, getting it out of “dips”

If you’re curious, annealing is the process of hardening metals by heating them to a high 
temperature and then gradually cooling them. In very hot metal, molecules can move 
fairly freely; they are slightly less likely to move out of a stable structure, so as metal 
cools, molecules are more likely to stay in a strong matrix. So now you know.

32
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Simulated Annealing

• Can avoid becoming trapped at local minima.

• Uses a random local search that:
• Accepts “moves” that decrease objective function f
• As well as some that increase it

• Uses a control parameter T
• By analogy with the original application 
• Is known as the system “temperature”

• T starts out high and gradually decreases toward 0

33

freedom to 
make “bad” 
moves

33

Simulated Annealing Pseudocode

X ¬ Initial configuration

Iterate: 

E ¬ Eval(X)

X’ ¬ Randomly selected neighbor of X

E’ ¬ Eval(X’)

If E’ ≥ E

X ¬ X’

E ¬ E’

Else with probability p
X ¬ X’ 

E ¬ E’

So what’s p?

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Choosing p

• If p is too low, we don’t make many ‘downhill’ moves 
• We might not get out of many local maxima

• If p is too high, we may be making too many suboptimal moves

• If p is constant, we might be making too many random moves when we 
are near the global maximum

• Solution: Decrease p over time
• More counterproductive moves early, fewer as search goes on 
• Intuition: as search progresses, we are moving towards more promising areas 

and hopefully toward a global maximum 

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Choosing p

• Use a temperature parameter T

• If E’ ≤ E, accept the downhill move with probability p = e-(E-E’)/T

• Start with high temperature T
• More downhill moves allowed at the start

• Decrease T gradually as iterations increase
• Fewer downhill moves as we progress

• “Annealing schedule” describes how T decreases over time

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Actual Simulated Annealing Pseudocode

X ¬ Initial configuration

Iterate: 

Do K times:

E ¬ Eval(X)

X’ ¬ Randomly selected neighbor of X

E’ ¬ Eval(X’)

If E’ ≥ E

X ¬ X’

E ¬ E’

Else with probability p = e–(E-E’)/T

X ¬ X’ 

E ¬ E’

T = ⍺T

Exponential cooling schedule
T(n) = ⍺T(n-1) with 0 < ⍺ < 1

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Simulated Annealing: Examples
www.youtube.com/watch?v=VWtYLv-4oP0
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Simulated Annealing Summary

• f (n) represents the quality of state n (high is good)

• A “bad” move from A to B is accepted with probability
P(moveA→B) ≈ e( f (B) – f (A))  / T

• f (B) – f (A) is negative – ‘bad’ moves have low probability
• f (B) – f (A) is positive – ‘good’ moves have higher probability

• Temperature
• Higher temperature = more likely to make a “bad” move
• As T tends to zero, this probability tends to zero

• SA becomes more like hill climbing
• If T is lowered slowly enough, SA is complete and admissible. 

• domain-specific 
• sometimes hard to determine

Lots of 
parameters 
to tweak L

39

Local Beam Search

• Always keep k, instead of one, current state(s)

• Begin with k randomly chosen states 

• Generate all successors of these states

• Keep the k best states across all successors

• Stochastic beam search
• Probability of keeping a state is a function of its heuristic value
• More likely to keep “better” successors

40

Slide from Dr. Rebecca Hutchinson @ Oregon State
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Local Beam Search

• How is this different from k random restarts in parallel?
• Random-restart search: each search runs independently of the others
• Local beam search: useful information is passed among the k parallel search threads
• E.g. One state generates good successors while the other k-1 states all generate bad 

successors, then only the more promising states are expanded

• Disadvantage: all k states can become stuck in a small region of the state space
• To fix this, use stochastic beam search
• Stochastic beam search:

• Doesn’t pick best k successors
• Chooses k successors at random, with probability of choosing a given successor 

being an increasing function of its value

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

41

Genetic Algorithms

42

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Genetic Algorithms

• The idea: 
• New states generated by “mutating” 

a single state or  “reproducing” 
(combining)  two parent states

• Selected for their fitness

• Like natural selection in which an organism creates offspring 
according to its fitness for the environment 

• Over time, population contains individuals with high fitness 

43

+

43

Genetic Algorithms

• Similar to stochastic 
beam search

• Start with k random states 
(the initial population)
• Encoding used for the “genome” of 

an individual strongly affects the 
behavior of the search

• Must have some combinable 
representation of state spaces

• Genetic algorithms / genetic 
programming are a research area

44

reproduction

mutation

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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GA Implementation

• Initially, population is diverse, crossover produces big changes from 
parents

• Over time, individuals become similar and crossover doesn’t produce 
such a big change

• Crossover is the big advantage
• Preserves a big block of “genes” that have evolved independently to perform 

useful functions

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Gradient Ascent / Descent

46

Images from http://en.wikipedia.org/wiki/Gradient_descent
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Hill climbing: Discrete spaces

X ¬ Initial configuration

Iterate: 

E ¬ Eval(X)

N ¬ Neighbors(X)

For each Xi in N 

Ei ¬ Eval(Xi)

E* ¬ Highest Ei

X* ¬ Xi with highest Ei

If E* > E 

X ¬ X*

Else 

Return X

• In discrete spaces, the 
number of neighbors is 
finite.

• What if there is a 
continuous space of 
possible moves leading 
to an infinite number 
of neighbors?

47

Local Search in Continuous Spaces

• Almost all real world problems involve continuous state spaces

• The main technique to find a local minimum is called gradient descent
(or gradient ascent if you want to find the maximum)

• To perform local search in continuous state spaces, you need calculus
• What is the gradient of a function f(x)?

• (the gradient) represents the direction of the steepest slope
• |          | (the magnitude of the gradient) tells you how big the steepest slope is 

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

48



9/11/24

25

Gradient Descent

• Suppose we want to find a local minimum of a function f(x)
• (Which we do—the continuous-space analog of a minimum) 

• We use the gradient descent rule: 

• Length of downward “steps” proportional to negative of the gradient 
(slope) at the current state
• “Steepest descent” à long “steps”
• Jump to a node that is “farther away” if f (�) difference is large

49

Gradient Descent (or Ascent)

• Gradient descent procedure for finding the argx min f(x)
• choose initial x0 randomly
• repeat:
• until the sequence x0, x1, …, xi, xi+1 converges

• Step size η (eta) is small (~0.1–0.05)

• Good for differentiable, continuous spaces

• Why not just calculate the global optimum using f(x) = 0 ?
• May not be able to solve this equation in closed form
• If you can’t solve it globally, you can still compute the gradient locally (like 

we are doing in gradient descent)

50

xi+1 ← xi – η f ’(xi)

Δ

50
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Gradient Descent

51

https://www.youtube.com/watch?v=ClotAJHZ3oE

51

Weaknesses of Gradient Descent

• Must pick α
• If too large, gradient descent overshoots the optimum point
• If too small, gradient descent requires too many steps and will take a very long 

time to converge

• Can be very slow to converge to a local optimum, especially if the 
curvature in different directions is very different

• Good results depend on the value of the learning rate α

• What if the function f(x) isn’t differentiable at x?

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State
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Gradient Methods vs. Newton’s Method

• Newton’s method (calculus):
• xi+1 ← xi – η f ’(xi) / f ’’(xi) 

• Newton’s method uses 2nd order 
information (the second derivative, 
or, curvature) to take a more direct 
route to the minimum.

• The second-order information is 
more expensive to compute, but 
converges more quickly.

Contour lines of a function (blue)

• Gradient descent (green)

• Newton’s method (red)

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization
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“Online” Search

• Interleave computation and action (search some, act some)
• Exploration: Don’t know outcomes of actions
• So agent must try them!

• Competitive ratio = Path cost found* / Path cost that could be found** 
• * On average, or in an adversarial scenario (worst case)
• ** If the agent knew transition functions and could use offline search

• Relatively easy if actions are reversible 

• LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new 
nodes are found

55
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Summary: Local Search (I)

• State space can be treated as a “landscape” of movement through 
connected states 

• We’re trying to find “high” (good) points

• Best-first search: a class of search algorithms where minimum-cost 
nodes are expanded first

• Greedy search: uses minimal estimated cost h(n) to the goal state as 
measure of goodness
• Reduces search time, but is neither complete nor optimal

56
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Summary: Local Search (II)

• Hill-climbing algorithms keep only a single state in memory, but can get 
stuck on local optima

• Simulated annealing escapes local optima, and is complete and optimal 
given a “long enough” cooling schedule

• Genetic algorithms search a space by modeling biological evolution

• Online search algorithms are useful in state spaces with partial/no 
information

57

Questions?
57
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Class Exercise: Local Search for n-Queens

Q

Q

Q

Q

Q

Q

Heuristic?
State space?
Search algorithm?
Example moves?

Problems?

58

Class Exercise: Moving

• You have to move from your old apartment to your new one. You have 
the following:
• A list L = {a1, a2, ..., an} of n items, each with a size s(ai) > 0.
• M moving boxes, each with a box capacity C (assume MC exceeds the sum of the 

sizes of your items)
• You can put arbitrary items into a box as long as the sum of their sizes does not 

exceed the box capacity C

• Your job is to pack your stuff into as few boxes as possible

• Formulate this as a local search problem

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

States?
Neighborhood? 
Evaluation 
function?
How to avoid 
local maxima? 
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