Local Search Ch. 4.1-4.2

Based on slides by Dr. Marie des Iardin. Some material also adapted from slides by Dr. Rebecca Hutchinson @ Oregon State, and Dr. Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which are based on Russell at Berkeley. Some diagrams are based on AIMA.

1

Bookkeeping

- Upcoming: homework 1 due 9/16 at 11:59 PM
- Last time: informed (heuristic) search
 - Greedy search
 - A* and its variants
- Today:
 - Local search
 - Beginnings of constraint satisfaction?

Today's Class

- Local Search
 - Search as "landscape"
 - Iterative improvement methods
 - Hill climbing
 - · Simulated annealing
 - · Local beam search
 - · Genetic algorithms
 - Online search
- Intro to Constraint Satisfaction

"If the **path** to the goal does not matter... [we can use] a single **current node** and move to neighbors of that node."

- R&N pg. 121

3

Real-World Problems

- Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.)...
- Or schedule airlines...
- Or schedule workers with specific skill sets to do tasks that have resource and ordering constraints

Slide from Dr. Rebecca Hutchinson @ Oregon State

Δ

Local Search

- These problems are unlike the search problems previously:
 - The path to the goal is irrelevant
 - All you care about is the final configuration
 - These are often optimization problems in which you find the best state according to an **objective function** applied to a node (state)
- These problems are examples of local search problems
 - · We care about the current state of the world

Slide from Dr. Rebecca Hutchinson @ Oregon State

5

Why Is This Hard?

- Lots of states (sometimes infinite)
- Most problems are NP-complete
- Objective function might be expensive
- But:
 - Use very little memory (usually constant)
 - Find reasonable (not usually optimal) solutions in large state spaces

Slide from Dr. Rebecca Hutchinson @ Oregon State

Local Search Algorithms

- · Sometimes the path to the goal is irrelevant
 - · Goal state itself is the solution
 - \exists an **objective function** to evaluate states
- In such cases, we can use local search algorithms
- Keep a single "current" state, try to improve it

7

Local Search Example: n-Queens

 Put n queens on an n×n board with no two queens on the same row, column, or diagonal

- Does it matter how we got to D?
- We only need the state not the history/path
- Once we reach D, can forget A, B/C

Local Search Algorithms

- ∃ an objective function to evaluate states
- State space = set of "complete" configurations
 - · All elements of a solution are present
 - All the queens are on the board
 - · All sudoku squares are filled
- · Find configurations that satisfy constraints
- In such cases, we can use local search algorithms
 - Keep a single "current" state, try to improve it

Image: telstarlogistics typepad com/telstarlogistics/2008/10/a-roadman-to-our-highways-in-the-sky htm

9

Slide from Dr. Rebecca Hutchinson @ Oregon State

Local Search Algorithm Recipe

- 1. Start with initial configuration X
- Evaluate its neighbors, i.e., the set of all states reachable in one move from X
- 3. Select one of its neighbors X*
- Move to X* and repeat until the current configuration is satisfactory

How you define the neighborhood is important.

Which neighbor you choose is important.

Some # of iterations, or some time, or until you can't move uphill

Landscapes

- Each node has **successor(s)** it can reach (called *s*)
 - Its children, unless there are loops

- h(n) h(s) is a positive, negative, or 0
- Want to go "uphill" (moving to a more desirable state)

Minor hassle: Sometimes maximizing, sometimes minimizing.

11

N-Queens example

• Evaluation function: number of queens in conflict

· We are here:

global maximum

Some possible moves:

• We want to traverse the graph "downward" (minimize f(n)), so we choose the right-hand choice

State Space (Landscape)

Maximizing (higher h(n) is better)

13

State Space (Landscape)

Maximizing (higher h(n) is better)

$$f(S) = 2$$

$$f(A) = 1$$

$$f(B) = 4$$

$$f(C) = 3$$

State Space (Landscape)

Maximizing (higher h(n) is better) f(S) = 2 f(A) = 1 f(B) = 4 f(C) = 3Maximizing (higher h(n) is better)

State Space (Landscape)

Maximizing (higher h(n) is better) f(S) = 2 f(A) = 1 f(B) = 4 f(C) = 3Current state space

State Space (Landscape)

Maximizing (higher h(n) is better)

$$f(S) = 2$$

$$f(A) = 1$$

$$f(B) = 4$$

$$f(C) = 3$$

19

Iterative Improvement Search

- · Start with an initial guess
- · Gradually improve it until it is legal or optimal
- Some examples:
 - Hill climbing
 - Simulated annealing
 - · Constraint satisfaction

Hill Climbing on State Surface

- Starting at initial state X, keep moving to the neighbor with the highest objective function value greater than X's
- Concept: trying to reach the "highest" (most desirable) point (state)
- "Height" Defined by Evaluation Function
- Use the negative of heuristic cost function as the objective function

21

Hill Climbing Search

- Looks one step ahead to determine if any successor is "better" than current state, then moves to best choice
- If there exists a successor s for the current state n such that
 - h(s) > h(n) it's better than where we are now
 - h(s) >= h(t) for all the successors t of n and better than other choices then move from n to s. Otherwise, halt at n.
- A kind of Greedy search in that it uses h
 - But, does not allow backtracking or jumping to an alternative path
 - · Doesn't "remember" where it has been
- Not complete or optimal
 - Search will terminate at local minima, plateaus, ridges.

Hill Climbing Pseudocode

```
\begin{split} X \leftarrow & \text{Initial configuration} \\ & \text{Iterate:} \\ & E \leftarrow Eval(X) \\ & N \leftarrow Neighbors(X) \\ & \text{For each } X_i \text{ in } N \\ & E_i \leftarrow Eval(X_i) \\ & E^* \leftarrow Highest \ E_i \\ & X^* \leftarrow X_i \text{ with highest } E_i \\ & \text{If } E^* > E \\ & X \leftarrow X^* \\ & \text{Else} \\ & \text{Return } X \end{split}
```

Pretty simple, but will help us later...

23

Exploring the Landscape

Local Maxima:

 Peaks that aren't the highest point in the whole space

Plateaus:

 A broad flat region that gives the search algorithm no direction (do a random walk)

Ridges:

 Flat like a plateau, but with drop-offs to the sides; steps to the North and South may go down, but a step to the East and West is stable

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

25

Drawbacks of Hill Climbing

- · Problems: local maxima, plateaus, ridges
- Remedies:
 - Random restart: keep restarting the search from random locations until the 'best' goal is found
 - How do you know when to stop restarting?
 - Problem reformulation: reformulate the search space to eliminate these problematic features
 - Sometimes feasible, often not
- Some problem spaces are great for hill climbing; others are terrible
- Hill climbing is also greedy local search because you are greedily choosing the best-choice option in the neighborhood

27

Example of a Local Optimum

Some Extensions of Hill Climbing

- Random-Restart Climbing
 - Can actually be applied to any form of search
 - Pick random starting points until one leads to a solution
- First-choice hill climbing
 - · Generate successors randomly until one is better than the current state
 - Our original n-queens example!
 - Good when state has many successors
- Local Beam Search
 - Keep track of k states rather than just one
 - At each iteration:
 - All successors of the k states are generated and evaluated
 - · Best k are chosen for the next iteration

29

Some Extensions of Hill Climbing

- Simulated Annealing
 - Escape local maxima by allowing some "bad" moves but gradually decreasing their frequency
- Stochastic (probabilistic) Beam Search
 - Chooses semi-randomly from "uphill" possibilities
 - "Steeper" (better) moves have a higher probability of being chosen
- Genetic Algorithms
 - Each successor is generated from two predecessor (parent) states

The Problem

 Typical real-world problems have many (possibly an exponential number of) local maxima

- A hill-climbing algorithm that never makes "downhill" moves is vulnerable to getting stuck in a local maximum
 - Imagine a ball trying to reach the lowest state it can get stuck in a "dip" that's above the lowest point
- A purely random walk that moves to a successor state whether it's "up" or "down" will eventually stumble on the global maximum, but is extremely inefficient

31

A possible solution

- · Let's combine hill climbing with random walk
- Hill-climbing never makes a downhill move
 - What if we added occasional non-positive moves to hill-climbing to help it get out of local maxima?
 - · This is the motivation for simulated annealing
- Conceptually: Escape local maxima by allowing some "bad" (locally counterproductive) moves but gradually decreasing their frequency
 - Our "ball" is allowed to bounce "up" occasionally, getting it out of "dips"

If you're curious, annealing is the process of hardening metals by heating them to a high temperature and then gradually cooling them. In very hot metal, molecules can move fairly freely; they are slightly less likely to move out of a stable structure, so as metal cools, molecules are more likely to stay in a strong matrix. So now you know.

Simulated Annealing

- · Can avoid becoming trapped at local minima.
- Uses a random local search that:
 - · Accepts "moves" that decrease objective function f
 - · As well as some that increase it
- Uses a control parameter T
 - By analogy with the original application
 - Is known as the system "temperature"

freedom to make "bad"

moves

T starts out high and gradually decreases toward 0

33

Simulated Annealing Pseudocode

```
X \leftarrow Initial configuration
```

Iterate:

 $E \leftarrow Eval(X)$

 $X' \leftarrow$ Randomly selected neighbor of X

 $E' \leftarrow Eval(X')$

If E' > E

 $X \leftarrow X'$

 $E \leftarrow E'$

Else with probability *p*

 $X \leftarrow X'$

 $E \leftarrow E'$

So what's p?

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon Stat

Choosing p

- If p is too low, we don't make many 'downhill' moves
 - · We might not get out of many local maxima
- If p is too high, we may be making too **many** suboptimal moves
- If p is constant, we might be making too many random moves when we are near the global maximum
- Solution: Decrease p over time
 - More counterproductive moves early, fewer as search goes on
 - Intuition: as search progresses, we are moving towards more promising areas and hopefully toward a global maximum

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

35

Choosing *p*

- Use a temperature parameter T
- If $E' \le E$, accept the downhill move with probability $p = e^{-(E-E')/T}$
- Start with high temperature T
 - · More downhill moves allowed at the start
- Decrease T gradually as iterations increase
 - Fewer downhill moves as we progress
- "Annealing schedule" describes how T decreases over time

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon Stat

Actual Simulated Annealing Pseudocode $X \leftarrow Initial configuration$ Iterate: Do K times: $E \leftarrow \text{Eval}(X)$ $X' \leftarrow$ Randomly selected neighbor of X $E' \leftarrow Eval(X')$ If $E' \ge E$ $X \leftarrow X'$ $E \leftarrow E'$ Else with probability $p = e^{-(E-E')/T}$ $X \leftarrow X'$ Exponential cooling schedule $E \leftarrow E'$ $T(n) = \alpha T(n-1)$ with $0 < \alpha < 1$ $T = \alpha T$

37

Simulated Annealing Summary

- f(n) represents the quality of state n (high is good)
- A "bad" move from A to B is accepted with probability $P(\text{move}_{A\to B})\approx e^{^{(f(B)-f(A))\,/\mathit{T}}}$

Lots of parameters to tweak 🕾

- f(B) f(A) is negative 'bad' moves have low probability
- f(B) f(A) is positive 'good' moves have higher probability
- Temperature
 - Higher temperature = more likely to make a "bad" move
 - As T tends to zero, this probability tends to zero
- domain-specific
- SA becomes more like hill climbing
- sometimes hard to determine
- If T is lowered slowly enough, SA is complete and admissible.

39

Slide from Dr. Rebecca Hutchinson @ Oregon State

Local Beam Search

- Always keep k, instead of one, current state(s)
- Begin with *k* randomly chosen states
- Generate all successors of these states
- Keep the k best states across all successors
- Stochastic beam search
 - Probability of keeping a state is a function of its heuristic value
 - More likely to keep "better" successors

Local Beam Search

- How is this different from k random restarts in parallel?
 - Random-restart search: each search runs independently of the others
 - Local beam search: useful information is passed among the k parallel search threads
 - E.g. One state generates good successors while the other k-1 states all generate bad successors, then only the more promising states are expanded
- Disadvantage: all k states can become stuck in a small region of the state space
 - To fix this, use stochastic beam search
 - Stochastic beam search:
 - Doesn't pick best k successors

24 31%

 Chooses k successors at random, with probability of choosing a given successor being an increasing function of its value

32748552

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

32748 🛮 52

41

Genetic Algorithms

24748552

32752411

Genetic Algorithms

- The idea:
 - New states generated by "mutating" a single state or "reproducing" (combining) two parent states
 - Selected for their fitness

- Like natural selection in which an organism creates offspring according to its fitness for the environment
- Over time, population contains individuals with high fitness

43

Genetic Algorithms

- Similar to stochastic beam search
- Start with k random states (the initial population)
 - Encoding used for the "genome" of an individual strongly affects the behavior of the search
 - Must have some combinable representation of state spaces
 - Genetic algorithms / genetic programming are a research area

reproduction

mutation

GA Implementation

- Initially, population is diverse, crossover produces big changes from parents
- Over time, individuals become similar and crossover doesn't produce such a big change
- Crossover is the big advantage
 - Preserves a big block of "genes" that have evolved independently to perform useful functions

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon State

45

Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent

Hill climbing: Discrete spaces

 $X \leftarrow$ Initial configuration Iterate:

 $E \leftarrow \text{Eval}(X)$ $N \leftarrow \text{Neighbors}(X) =$

For each X_i in N

 $E_i \leftarrow Eval(X_i)$

 $E^* \leftarrow Highest E_i$

 $X^* \leftarrow X_i$ with highest E_i

If $E^* > E$

 $X \leftarrow X^*$

Else

Return X

- In discrete spaces, the number of neighbors is finite.
- What if there is a continuous space of possible moves leading to an infinite number of neighbors?

47

Local Search in Continuous Spaces

- Almost all real world problems involve continuous state spaces
- The main technique to find a local minimum is called gradient descent (or gradient ascent if you want to find the maximum)
- To perform local search in continuous state spaces, you need calculus
 - What is the gradient of a function f(x)?

$$\nabla f(x) = \frac{\partial}{\partial x} f(x)$$

- Vf(x) (the gradient) represents the direction of the steepest slope
- $|\nabla f(x)|$ (the magnitude of the gradient) tells you how big the steepest slope is

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon Sta

Gradient Descent

- Suppose we want to find a local minimum of a function f(x)
 - (Which we do—the continuous-space analog of a minimum)
- We use the gradient descent rule:

$$x \leftarrow x - \alpha \nabla f(x)$$

- Length of downward "steps" proportional to negative of the gradient (slope) at the current state
 - "Steepest descent" → long "steps"
 - Jump to a node that is "farther away" if f(•) difference is large

49

Gradient Descent (or Ascent)

- Gradient descent procedure for finding the $arg_x min f(x)$
 - choose initial x₀ randomly
 - repeat: $\mathbf{X}_{i+1} \leftarrow \mathbf{X}_i \eta f'(\mathbf{X}_i)$
 - until the sequence $x_0, x_1, ..., x_i, x_{i+1}$ converges
- Step size η (eta) is small (~0.1–0.05)
- Good for differentiable, continuous spaces
- Why not just calculate the global optimum using $\nabla f(x) = 0$?
 - · May not be able to solve this equation in closed form
 - If you can't solve it globally, you can still compute the gradient locally (like we are doing in gradient descent)

51

Weaknesses of Gradient Descent

- Must pick α
 - If too large, gradient descent overshoots the optimum point
 - If too small, gradient descent requires too many steps and will take a very long time to converge
- Can be very slow to converge to a local optimum, especially if the curvature in different directions is very different
- Good results depend on the value of the learning rate $\boldsymbol{\alpha}$
- What if the function f(x) isn't differentiable at x?

Slide nartially drawn from Dr. Rehecca Hutchinson @ Oregon State

Gradient Methods vs. Newton's Method

- Newton's method (calculus):
 - $x_{i+1} \leftarrow x_i \eta f'(x_i) / f''(x_i)$
- Newton's method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.
- The second-order information is more expensive to compute, but converges more quickly.

Contour lines of a function (blue)

- Gradient descent (green)
- Newton's method (red)

 $Images\ from\ http://en.wikipedia.org/wiki/Newton's_method_in_optimization. The property of the property of$

53

"Online" Search

- Interleave computation and action (search some, act some)
 - Exploration: Don't know outcomes of actions
 - So agent must try them!
- Competitive ratio = Path cost found* / Path cost that could be found**
 - * On average, or in an adversarial scenario (worst case)
 - ** If the agent knew transition functions and could use offline search
- Relatively easy if actions are reversible
- LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new nodes are found

Summary: Local Search (I)

- State space can be treated as a "landscape" of movement through connected states
- · We're trying to find "high" (good) points
- **Best-first search**: a class of search algorithms where minimum-cost nodes are expanded first
- **Greedy search**: uses minimal estimated cost h(n) to the goal state as measure of goodness
 - Reduces search time, but is neither complete nor optimal

56

Summary: Local Search (II)

- Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima
- Simulated annealing escapes local optima, and is complete and optimal given a "long enough" cooling schedule
- Genetic algorithms search a space by modeling biological evolution
- Online search algorithms are useful in state spaces with partial/no information

Class Exercise: Local Search for *n*-Queens

58

Class Exercise: Moving

- You have to move from your old apartment to your new States?
 the following:
 - A list L = $\{a_1, a_2, ..., a_n\}$ of n items, each with a size $s(a_i) > 0$.
 - M moving boxes, each with a box capacity C (assume MC excisives of your items)
 - You can put arbitrary items into a box as long as the sum of tocal maxima?
 exceed the box capacity C
- Your job is to pack your stuff into as few boxes as possible
- Formulate this as a local search problem

Neighborhood?
Evaluation
function?
How to avoid

Slide partially drawn from Dr. Rebecca Hutchinson @ Oregon Sta